Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Biochimie ; 223: 13-22, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38531484

RESUMO

The blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders. Soluble epoxide hydrolase (sEH) is a hydrolase enzyme that converts epoxy-fatty acids (EpFAs) to their corresponding diols and is involved in the onset and progression of multiple diseases. EpFAs play a protective role in the central nervous system via preventing neuroinflammation, making sEH a potential therapeutic target for CNS diseases. Recent studies showed that sEH inhibition prevented BBB impairment caused by stroke, hemorrhage, traumatic brain injury, hyperglycemia and sepsis via regulating the expression of tight junctions. In this review, the protective actions of sEH inhibition on BBB and potential mechanisms are summarized, and some important questions that remain to be resolved are also addressed.

2.
Water Res ; 254: 121351, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401287

RESUMO

The application of Fenton-like membrane reactors for water purification offers a promising solution to overcome technical challenges associated with catalyst recovery, reaction efficiency, and mass transfer typically encountered in heterogeneous batch reaction modes. This study presents a dual-modification strategy encompassing electron polarization and defect engineering to synthesize Al-doped and oxygen vacancies (OV)-enriched Co3O4 spinel catalysts (ACO-OV). This modification empowered ACO-OV with exceptional performance in activating peroxymonosulfate (PMS) for the removal of organic contaminants. Moreover, the ACO-OV@polyethersulfone (PES) membrane/PMS system achieved organic contaminant removal through filtration (with a reaction kinetic constant of 0.085 ms-1), demonstrating outstanding resistance to environmental interference and high operational stability. Mechanistic investigations revealed that the exceptional catalytic performance of this Fenton-like membrane reactor stemmed from the enrichment of reactants, exposure of reactive sites, and enhanced mass transfer within the confined space, leading to a higher availability of reactive species. Theoretical calculations were conducted to validate the beneficial intrinsic effects of electron polarization, defect engineering, and the confined space within the membrane reactor on PMS activation and organic contaminant removal. Notably, the ACO-OV@PES membrane/PMS system not only mineralized the targeted organic contaminants but also effectively mitigated their potential environmental risks. Overall, this work underscores the significant potential of the dual-modification strategy in designing spinel catalysts and Fenton-like membrane reactors for efficient organic contaminant removal.


Assuntos
Óxido de Alumínio , Cobalto , Elétrons , Óxidos , Polímeros , Sulfonas , Óxido de Magnésio , Peróxidos
3.
Environ Res ; 246: 118564, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417658

RESUMO

Metal-organic frameworks (MOFs) have shown great prospects in wastewater remediation. However, the easy aggregation, difficult separation and inferior reusability greatly limit their large-scale application. Herein, we proposed a facile, green and low-cost strategy to construct robust and stable MOF-based hydrogel beads (Fe-BTC-HBs) in a gram scale, and employed them to remove antibiotics from wastewater. As a result, the Fe-BTC-HBs demonstrated outstanding adsorption capacity for both ofloxacin (OFL) and tetracycline (TC) (281.17 mg/g for OFL and 223.60 mg/g for TC) under a near-neutral environment. The main adsorption mechanisms of OFL and TC were hydrogen bonding and π-π stacking interaction. Owing to its macroscopic granule and stable structure, Fe-BTC-HBs can be separated rapidly from wastewater after capturing antibiotics, and more than 85% adsorption capacity still remained after six cycles, while the powdered Fe-BTC only showed less than 6% recovery efficiency with massive weight loss (around 92%). In real industrial effluent, the adsorption performance of Fe-BTC-HBs toward two antibiotics exhibited negligible decreases (2.9% for OFL and 2.2% for TC) compared with that in corresponding solutions. Furthermore, Fe-BTC-HBs also had appealing economic and environmental benefit. Overall, the macro-manufactured MOF beads have the promising potential for the large-scale wastewater treatment.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Antibacterianos/química , Águas Residuárias , Poluentes Químicos da Água/química , Tetraciclina , Adsorção , Cinética
4.
Appl Opt ; 62(36): 9591-9598, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38108785

RESUMO

The OTSU method (OTSU) is considered to be the best algorithm for threshold selection in image segmentation. The algorithm is easy to calculate and not affected by image brightness and contrast, so it is widely used in the field of digital image processing. Due to the slow running speed and large storage space of the algorithm on the traditional electronic computer, this research makes use of the advantages of the ternary optical computer (TOC), such as numerous data bits and the reconfigurable processor. Through the analysis of the OTSU algorithm, we find the part of the OTSU algorithm that can be calculated in parallel, and put forward a parallel OTSU algorithm based on TOC. The algorithm first uses a classifier to classify the number of pixels. By reconstructing the MSD adder and multiplier, the inter-class variance under each gray value is calculated in parallel, and the maximum value is selected by comparing the inter-class variance. The corresponding threshold is the best segmentation threshold. By analyzing the clock cycle and data bit resources of the algorithm, and then conducting a comparative analysis and experimental verification, we found that the computational speed of TOC increased by approximately 12% when handling images with the same amount of computation.

5.
Water Environ Res ; 95(12): e10969, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38148739

RESUMO

In this work, a composite flocculant (polyferric titanium sulfate-polydimethyldiallylammonium chloride [PFTS-PDMDAAC]) with a rich spatial network structure was prepared for the treatment of simulated wastewater containing polystyrene (PS) micro-nanoparticles. Characterization results showed that the surface of the PFTS-PDMDAAC was a three-dimensional network polymer of chain molecules that exhibited good thermal stability and formed an amorphous polymer containing multiply hydroxyl-bridged titanium and iron. When n(OH- ) : n(Fe) = 1:2, n(PO4 3- ) : n(Fe) = 0.35, n(Ti) : n(Fe) = 1:8, n(DMDAAC) : n(Fe) = 5:100, and the polymerization temperature is 60°C, the prepared composite flocculant has the best effect. The effects of dosage, pH, and agitation intensity on the flocculation properties of PFTS-PDMDAAC were also studied. The optimal removal rates of PS-µm and haze by PFTS-PDMDAAC were 85.60% and 90.10%, respectively, at a stirring intensity of 200 rpm, a pH of 9.0, and a PFTS-PDMDAAC dosage of 20 mg/L. The flocs produced by the PFTS-PDMDAAC flocculation were large and compact in structure, and the flocculation mechanism was mainly based on adsorption bridging. Kaolin played a promoting role in the process of PS-µm removal by PFTS-PDMDAAC floc and accelerated the formation of large and dense flocs. This study provided a reference for the coagulation method to remove micro-nanopollutants in the actual water treatment process. PRACTITIONER POINTS: A composite flocculant with rich spatial network structure (PFTS-PDMDAAC) was prepared. PFTS-PDMDAAC can effectively remove micro-nano polystyrene (PS) in wastewater. The floc produced by PFTS-PDMDAAC is large and compact in structure. The flocculation mechanism of PFTS-PDMDAAC is mainly adsorption bridging.


Assuntos
Águas Residuárias , Purificação da Água , Microplásticos , Plásticos , Titânio/química , Floculação , Purificação da Água/métodos
6.
Mar Pollut Bull ; 197: 115739, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925991

RESUMO

Offshore coastal marine ranching ecosystems are one of the most productive ecosystems. The results showed that the composition and structure of the microbial communities varied considerably with the season. Co-occurrence network analysis demonstrated that the microbial network was more complex in summer and positively correlated links (cooperative or symbiotic) were dominated in autumn and winter. Null model indicated that the ecological processes of the bacterial communities were mainly governed by deterministic processes (mainly homogeneous selection) in summer. For microeukaryotic communities, assembly processes were more regulated by stochastic processes in all seasons. For rare taxa, assembly processes were regulated by stochastic processes and were not affected by seasonality. Changes in water temperature due to seasonal variations were the main, but not the only, environmental factor driving changes in microbial communities. This study will improve the understanding of offshore coastal ecosystems through the perspective of microbial ecology.


Assuntos
Microbiota , Estações do Ano , Temperatura , Consórcios Microbianos , Bactérias
7.
BMC Plant Biol ; 23(1): 399, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37605165

RESUMO

The environment in Antarctica is characterized by low temperature, intense UVB and few vegetation types. The Pohlia nutans M211 are bryophytes, which are the primary plants in Antarctica and can thrive well in the Antarctic harsh environment. The transcriptional profiling of Pohlia nutans M211 under low temperature and high UVB conditions was analyzed to explore their polar adaptation mechanism in the extreme Antarctic environment by third-generation sequencing and second-generation sequencing. In comparison to earlier second-generation sequencing techniques, a total of 43,101 non-redundant transcripts and 10,532 lncRNA transcripts were obtained, which were longer and more accurate. The analysis results of GO, KEGG, AS (alternative splicing), and WGCNA (weighted gene co-expression network analysis) of DEGs (differentially expressed genes), combined with the biochemical kits revealed that antioxidant, secondary metabolites pathways and photosynthesis were the key adaptive pathways for Pohlia nutans M211 to the Antarctic extreme environment. Furthermore, the low temperature and strong UVB are closely linked for the first time by the gene HY5 (hlongated hypocotyl 5) to form a protein interaction network through the PPI (protein-protein interaction networks) analysis method. The UVR8 module, photosynthetic module, secondary metabolites synthesis module, and temperature response module were the key components of the PPI network. In conclusion, this study will help to further explore the polar adaptation mechanism of Antarctic plants represented by bryophytes and to enrich the polar gene resources.


Assuntos
Briófitas , Bryopsida , Antioxidantes , Regiões Antárticas , Fotossíntese , Briófitas/genética
8.
J Hazard Mater ; 456: 131715, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245367

RESUMO

Advanced oxidation processes (AOPs) using oxygen (O2) as an oxidant represent a low-cost and sustainable wastewater treatment process. Herein, a metal-free nanotubular carbon nitride photocatalyst (CN NT) was prepared to activate O2 to degrade organic contaminants. The nanotube structure allowed for sufficient O2 adsorption, while the optical and photoelectrochemical properties enabled photogenerated charge to be efficiently transferred to the adsorbed O2 to trigger the activation process. The developed CN NT/Vis-O2 system based on O2 aeration degraded various organic contaminants and mineralized 40.7% of chloroquine phosphate within 100 min. In addition, the toxicity and environmental risk of treated contaminants were reduced. Mechanistic studies suggested that the enhanced O2 adsorption capacity and fast charge transfer behavior on CN NT surface led to reactive·O2-, 1O2 and h+ generation, each of which played a distinct role in contaminants degradation. Importantly, the proposed process could overcome the interference from water matrices and outdoor sunlight, and the energy and chemical reagent savings reduced the operating cost to about 1.63 US$·m-3. Altogether, this work provides insights into the potential application of metal-free photocatalysts and green O2 activation for wastewater treatment.

9.
Cell Mol Neurobiol ; 43(1): 139-153, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34978648

RESUMO

NMDA receptors play an important physiological role in regulating synaptic plasticity, learning and memory. GluN2A subunits are the most abundant functional subunits of NMDA receptors expressed in mature brain, and their dysfunction is related to various neurological diseases. According to subunit composition, GluN2A-containing NMDA receptors can be divided into two types: diheteromeric and triheteromeric receptors. In this review, the expression, functional and pharmacological properties of different kinds of GluN2A-containing NMDA receptors as well as selective GluN2A regulators were described to further understand this type of NMDA receptors.


Assuntos
Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-36078522

RESUMO

In this study, Mn/Zn@palygorskite (PG) catalysts with developed pores and good salt tolerance were prepared and applied to the treatment of coal chemical wastewater. A doping ratio of metal elements, calcination temperature, and calcination time was used to optimize the preparation conditions and determine the optimal preparation conditions of the Mn/Zn@PG catalysts. The catalysts, obtained under various preparation conditions, were characterized and analyzed by XRD, SEM, EDS, BET, XRF, XPS, and other techniques. Results showed that the Zn and Mn elements in the Mn/Zn@PG catalyst existed as ZnO and MnO2, respectively. The optimal working conditions of the Mn/Zn@PG catalyst for catalytic oxidation treatment of coal chemical wastewater, obtained through the optimization of working conditions, are the following: reaction time 60 min, wastewater pH = 9.28, ozone ventilation rate 0.2 L/min, catalyst filling ratio 20%. The height-to-diameter ratio of the tower was 6:1. The abrasion resistance and catalytic performance of the Mn/Zn@PG catalyst after repeated use were investigated, and the mechanism of the loss of active components of the Mn/Zn@PG catalyst was explored. The coal chemical wastewater, before and after treatment, was analyzed by UV-vis spectroscopy and 3D fluorescence spectroscopy. The hierarchical-principal component comprehensive evaluation system (AHP-PCA) was established to evaluate the catalytic ozonation process of coal chemical wastewater, so that the overall evaluation of the process performance can be achieved.


Assuntos
Ozônio , Águas Residuárias , Catálise , Carvão Mineral , Compostos de Magnésio , Compostos de Manganês , Óxidos , Ozônio/química , Compostos de Silício , Águas Residuárias/química , Zinco
11.
Diving Hyperb Med ; 52(3): 183-190, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36100929

RESUMO

INTRODUCTION: This study measured pulmonary function in divers after a single helium-oxygen (heliox) dive to 80, 100, or 120 metres of sea water (msw). METHODS: A total of 26 divers participated, of whom 15, five, and six performed a 80, 100, or 120 msw dive, respectively. While immersed, the divers breathed heliox and air, then oxygen during surface decompression in a hyperbaric chamber. Pulmonary function was measured twice before diving, 30 min after diving, and 24 h after diving. RESULTS: At 30 min after the 80 msw dive the forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio and the maximum expiratory flow at 25% of vital capacity (MEF25) values decreased (89.2% to 87.1% and 2.57 L·s⁻¹ to 2.35 L·s⁻¹, P = 0.04, P = 0.048 respectively) but FEV1/FVC returned to the baseline values by 24 h post-dive. Other pulmonary indicators exhibited downward trends at 30 min after the dive, but statistical significance was lacking. Interestingly, though several parameters decreased after the 100 msw dive, statistical significance was not reached. After the 120 msw dive, the FEV1/FVC and MEF75 decreased (90.4% to 85.6% and 8.05 L·s⁻¹ to 7.46 L·s⁻¹, P = 0.01, P = 0.007). The relatively small numbers of subjects who dived to 100 and 120 msw depths may explain the inconsistent results. The subjects diving to 100 and 120 msw were more trained / skilled, but this would not explain the inconsistencies in results between these depths. CONCLUSIONS: We conclude that single deep heliox dives cause a temporary decrease in FEV1/FEV and MEF25 or MEF75, but these changes can recover at 24 h after the dive.


Assuntos
Mergulho , Hélio , Humanos , Pulmão , Oxigênio
12.
Artigo em Inglês | MEDLINE | ID: mdl-35954642

RESUMO

Sludge dewatering is an important link in sludge treatment. In practical engineering, the dewatering effect of unconditioned sludge is very poor. The use of advanced oxidation technology can improve sludge dewatering performance, reduce sludge capacity, and remove micro-pollutants, which is beneficial for sludge post-treatment and disposal. Based on the current status of sludge conditioning and dehydration, the characteristics of the advanced oxidation method for sludge dehydration were systematically explained using various free radical reaction mechanisms and dehydration conditions. The effects of various advanced oxidation technologies on sludge conditioning and dewatering has been extensively discussed. Finally, the application prospects of the advanced oxidation technology in sludge conditioning and dewatering are presented.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Desidratação , Humanos , Tecnologia , Eliminação de Resíduos Líquidos/métodos , Água
13.
J Immunol Res ; 2022: 8023915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033392

RESUMO

Colorectal cancer (CRC) is a common malignant tumor, and its incidence ranks third and mortality rate ranks second in the world. Cisplatin cannot target CRC cells and has notable toxicity, which significantly limits its clinical application. The emerging PEGylated nanodrug delivery system can improve circulation time and enhance tumor targeting. In this study, the HA-mPEG-Cis NPs were synthesized by self-assembly, which can target CD44-positive CRC cells and dissolve the PEG hydration layer responsive to the weakly acidic tumor environment. The average hydrodynamic diameter of HA-mPEG-Cis NPs was 48 nm with the polydispersity index of 0.13. The in vitro cisplatin release was in a pH-responsive manner. The HA-mPEG-Cis NPs group showed the highest apoptosis rate (25.1%). The HA-mPEG-Cis NPs exhibited antitumor efficacy via the PI3K/AKT/mTOR signaling pathway. The HA-mPEG-Cis NPs showed the lowest tumor volume and weight among all the groups in CT26 cell-bearing mouse model. The HA-mPEG-Cis nanodrug delivery system not only increases the stability and circulation time but also reduces the side effects of loaded cisplatin. Overall, the in vitro and in vivo experiments confirmed the satisfied antitumor efficacy of HA-mPEG-Cis NPs. Therefore, this study provides a rational design for application of pH-responsive HA-mPEG-Cis nanodrug delivery system in the future.


Assuntos
Neoplasias Colorretais , Nanopartículas , Animais , Linhagem Celular Tumoral , Cisplatino , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases , Polietilenoglicóis
14.
Bioorg Chem ; 127: 105898, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35792317

RESUMO

The elevation of epoxy-fatty acids through inhibition of soluble epoxide hydrolase (sEH) is efficient for the treatment of inflammatory and pain-related diseases. Herein, we reported the discovery of a series of benzamide derivatives containing urea moiety as sEH inhibitors. Intensive structural modifications led to the identification of compound A34 as a potent sEH inhibitor with good physicochemical properties. Molecular docking revealed an additional hydrogen-bonding interaction between the unique amide scaffold and Phe497, contributing to sEH inhibition potency enhancement. Compound A34 exhibited outstanding inhibitory activity against human sEH, with an IC50 value of 0.04 ± 0.01 nM and a Ki value of 0.2 ± 0.1 nM. It also showed moderate systemic drug exposure and oral bioavailability in vivo metabolism studies. In carrageenan-induced inflammatory pain rat model, compound A34 exhibited a better therapeutic effect compared to t-AUCB and Celecoxib. Metabolism studies in vivo together with an inflammatory pain evaluation suggest that A34 may be a viable lead compound for the development of highly potent sEH inhibitors.


Assuntos
Inibidores Enzimáticos , Epóxido Hidrolases , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Dor , Ratos , Solubilidade , Ureia/farmacologia
15.
Materials (Basel) ; 15(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35888470

RESUMO

The extensive use of ibuprofen (IBU) and other pharmaceuticals and personal care products (PPCPs) causes them widely to exist in nature and be frequently detected in water bodies. Advanced catalytic oxidation processes (AOPs) are often used as an efficient way to degrade them, and the research on heterogeneous catalysts has become a hot spot in the field of AOPs. Among transitional metal-based catalysts, metal cobalt has been proved to be an effective element in activating peroxymonosulfate (PMS) to produce strong oxidizing components. In this study, the used D001 resin served as the matrix material and through simple impregnation and calcination, cobalt was successfully fixed on the carbon ball in the form of cobalt sulfide. When the catalyst was used to activate persulfate to degrade IBU, it was found that under certain reaction conditions, the degradation rate in one hour could exceed 70%, which was far higher than that of PMS and resin carbon balls alone. Here, we discussed the effects of catalyst loading, PMS concentration, pH value and temperature on IBU degradation. Through quenching experiments, it was found that SO4- and ·OH played a major role in the degradation process. The material has the advantages of simple preparation, low cost and convenient recovery, as well as realizing the purpose of reuse and degrading organic pollutants efficiently.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35682124

RESUMO

Sludge dewatering is the fundamental process of sludge treatment. Environmentally friendly and efficient sludge conditioning methods are the premises of sludge to achieve dehydration reduction and resource utilization. In response to sewage plant sludge dehydration, fly ash (FA), polymerized aluminum chloride (PAC), and polymer sulfate (PFS) were studied separately to determine their sludge dehydration performance, and the effects of these three conditioner composite regulations on sludge dehydration properties were studied. Compared to the sludge treated only with conditioner, the average particle size of floc increased and the organic matter content in the filtrate decreased. The sludge dewatering efficiency after the conditioning effect is better than that after conditioning a single conditioner. After PFS conditioning with fly ash, the water content and specific resistance (SRF) of the sludge cake can be reduced to 76.39% and 6.63 × 1010 m/kg, respectively. The moisture content and specific resistance (SRF) of the sludge cake can be reduced to 76.10% and 6.91 × 1010 m/kg, respectively. The pH of the sludge and filtrate changed slightly after PAC conditioning with fly ash coupling. These results indicate that fly-ash coupled with PAC and fly-ash coupled with PFS are expected to become a novel and effective environmental protection combined conditioning method for sludge dewatering.


Assuntos
Cinza de Carvão , Esgotos , Desidratação , Filtração , Floculação , Humanos , Esgotos/química , Esqueleto , Eliminação de Resíduos Líquidos/métodos , Água
17.
Sensors (Basel) ; 22(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591293

RESUMO

A novel six-axis force/torque sensor (F/T sensor) for an Experimental Module Manipulator (EMM) in the Chinese Space Station (CSS) is developed in this paper. First, we designed the elastomer structure of the F/T sensor and used the analytical method and the finite element method to analyze the strain, in order to accomplish the strain gauges' layout. Then, the electrical system was designed, which mainly realizes the acquisition of force/torque information, temperature and serial communication with the end effector (EE). Following this, we analyzed and designed the adaptability of the F/T sensor to the space environment. After this, the manufacturing process of the sensor was introduced in detail, and the F/T sensor was calibrated by a pulley weight system. Finally, the sensor was tested on the space environment adaptability of mechanical vibration and thermal vacuum on the ground. The test results show that the developed sensor has the ability to accurately measure three-dimensional force and three-dimensional moment information on orbit, which provides necessary conditions for the on-orbit fine operation of EMM.


Assuntos
Fenômenos Mecânicos , China , Torque
18.
Bioorg Med Chem Lett ; 70: 128805, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598794

RESUMO

The pharmacological inhibition of soluble epoxide hydrolase (sEH) was shown to reduce inflammation and pain. Herein, we described a series of newly synthesized sEH inhibitors with the trident-shaped skeleton. Intensive structural modifications led to the identification of compound B15 as a potent sEH inhibitor with an IC50 value of 0.03 ± 0.01 nM. Furthermore, compound B15 showed satisfactory metabolic stability in human liver microsomes with a half-time of 197 min. In carrageenan-induced inflammatory pain rat model, compound B15 exhibited a better therapeutic effect compared to t-AUCB and Celecoxib, which demonstrated the proof of potential as anti-inflammatory agents for pain relief.


Assuntos
Inibidores Enzimáticos , Epóxido Hidrolases , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Inibidores Enzimáticos/química , Dor , Ratos , Relação Estrutura-Atividade , Ureia/farmacologia , Ureia/uso terapêutico
19.
Front Pharmacol ; 13: 831181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264964

RESUMO

Excessive activation of N-methyl-d-aspartic acid (NMDA) receptors after cerebral ischemia is a key cause of ischemic injury. For a long time, it was generally accepted that calcium influx is a necessary condition for ischemic injury mediated by NMDA receptors. However, recent studies have shown that NMDA receptor signaling, independent of ion flow, plays an important role in the regulation of ischemic brain injury. The purpose of this review is to better understand the roles of metabotropic NMDA receptor signaling in cerebral ischemia and to discuss the research and development directions of NMDA receptor antagonists against cerebral ischemia. This mini review provides a discussion on how metabotropic transduction is mediated by the NMDA receptor, related signaling molecules, and roles of metabotropic NMDA receptor signaling in cerebral ischemia. In view of the important roles of metabotropic signaling in cerebral ischemia, NMDA receptor antagonists, such as GluN2B-selective antagonists, which can effectively block both pro-death metabotropic and pro-death ionotropic signaling, may have better application prospects.

20.
J Environ Manage ; 312: 114856, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35325739

RESUMO

To suppress the electron-hole recombination and enhance the electron transfer on carbon nitride, an Fe-doped porous carbon nitride catalyst (Fe/SCN) was synthesized via supramolecular self-assembly method and applied in heterogeneous Fenton activation for efficient tetracycline (TC) degradation. Various characterizations revealed that the catalyst exhibited excellent visible light capture performance and electron transfer capacity. The highest degradation efficiency and mineralization rate of TC (10 mg L-1) were achieved under neutral condition (90.3% and 61.2%, respectively) with the leaching of Fe less than 14 µg L-1. Free radical quenching experiments and spin-resonance spectroscopy characterizations revealed the dominating role of OH in TC degradation, and density functional theory calculation confirmed the formation of Fe-NX and revealed the interaction between Fe sites and H2O2. Three possible pathways of TC degradation were proposed, and the biological inhibition test revealed the potential of Fe/SCN/H2O2 system to reduce environmental risks caused by TC. This work provides a new insight into the design of metal-doped heterogeneous Fenton catalyst for the efficient degradation of antibiotic contaminants in water.


Assuntos
Peróxido de Hidrogênio , Tetraciclina , Antibacterianos , Catálise , Peróxido de Hidrogênio/química , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...